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Abstract. In this paper we study the ground state phase diagram of a one-dimensional t−J−U model away
from half-filling. In the large-bandwidth limit and for ferromagnetic exchange with easy-plane anisotropy
a phase with gapless charge and massive spin excitations, characterized by the coexistence of triplet super-
conducting and spin density wave instabilities is realized in the ground state. With increasing ferromagnetic
exchange transitions into a ferrometallic and then a spin gapped triplet superconducting phase take place.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model
systems – 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 74.20.Mn Unconventional mechanisms
(spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal
Fermi liquid, Luttinger liquid, etc.) – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

Experimental and theoretical investigations show that
many strongly correlated electronic systems exhibit
surprisingly complex phase diagrams [1]. Especially
the competition or coexistence of magnetic order and
superconductivity is a topic of increased current interest.
Magnetically mediated Cooper pairing near the antifer-
romagnetic instability is widely discussed in the context
of superconductivity in copper-oxide systems [2,3]. More-
over, the discovery of Triplet Superconductivity (TS) in
Sr2RuO4 [4] and the recent discovery of coexistence of the
TS phase with ferromagnetism in UGe2 [5], URhGe [6]
and ZrZn2 [7] has triggered an increased activity in stud-
ies of correlated electron models showing close proximity
of triplet superconducting and ferromagnetically ordered
phases [8–17].

Another challenging problem is superconductivity in
quasi-one-dimensional compounds [19]. More than two
decades have passed since the discovery of superconductiv-
ity in so-called Bechgaard salts such as (TMTSF)2X with
X = PF6, ClO4, etc. [20]. Most interesting is the phase di-
agram of (TMTSF)2PF6 which shows a spin-Peierls (SP)
phase in the ground state at atmospheric pressure. In-
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creasing pressure leads first to a transition from the SP
phase into a spin density wave (SDW) phase, and finally
to the suppression of the SDW ground state in favor of
superconductivity [21]. In last years an increasing amount
of convincing experimental evidence has been accumu-
lated in favour of the triplet superconducting ordering
in these compounds [22]. This triggered interest in low-
dimensional models of correlated electrons showing mech-
anism for Cooper pairing of triplet symmetry coexisting
or closely competing with SDW type ordering. Although
a wide variety of theoretical approaches have so far been
used to study this topic [23–29], the understanding of the
microscopic mechanisms for the complex phenomena in
these compounds is still far from complete.

In [30] an extension of the Hubbard model including
anisotropic spin-spin interactions has been proposed as
a suitable model for systems with coexisting orders. The
model describes a system of itinerant electrons with
anisotropic spin-exchange interaction between electrons
on nearest-neighbor sites. The one-dimensional version of
the Hamiltonian reads:

H = − t
∑

n,α

(c†n,αcn+1,α + c†n+1,αcn,α) + U
∑

n

ρn,↑ρn,↓

+
Jxy

2

∑

n

(S+
n S−

n+1 + h.c.) + Jz

∑

n

Sz
nSz

n+1 . (1)

Here c†n,α (cn,α) is the creation (annihilation) operator
for an electron at site n with spin α, ρα(n) = c†n,αcn,α,
S(n) = 1

2c†n,ασαβcn,β where σi (i = x, y, z) are the Pauli
matrices.
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Indeed, this model was shown to exhibit an extremely
rich phase diagram in the case of a half-filled band [30,31].
In particular in the case of the ferromagnetic XY-type ex-
change interactions the ground state phase diagram con-
sists of sequence of transitions (with increasing ferro ex-
change) from a metallic phase with coexisting TS0 and
SDWz instabilities, into an insulating Néel type antifer-
romagnetic phase and finally, for strong XY-type ferro-
exchange into the insulating ferromagnetic XY phase [31].

In this paper we study the effect of doping on the
ground state phase diagram of the model (1). We use a
combined approach based on continuum-limit bosoniza-
tion and DMRG techniques. In the range of applicabil-
ity of the continuum-limit approach we have obtained the
ground state phase diagram for a wide range of model
parameters and band-fillings ν. In our numerical studies
we restrict our consideration to the case of a quarter-
filled band with XY-type spin exchange interaction and
on-site repulsion U ≥ 0. We investigate the excitation
spectrum of the system as well as the behavior of various
correlation functions. Depending on the relation between
the model parameters Jxy/t and U/t we have shown the
existence of four different metallic phases in the ground
state (see Fig. 10): in the case of antiferromagnetic ex-
change the system shows properties of a spin gapped
(Luther-Emery) metal with coexistence of the singlet-
superconducting and charge-density-wave (CDW) insta-
bilities. The line Jxy = 0 corresponds to the Luttinger
Liquid phase and marks the transition from a spin gapped
sector with singlet Cooper pairing (antiferromagnetic ex-
change) into the spin gapped sector with triplet Cooper
pairing (ferromagnetic exchange). For weak ferromagnetic
exchange, at Jc1

xy < Jxy < 0 the system displays proper-
ties of a spin gapped metal with coexistence of the triplet
superconducting and spin-density-wave (SDWz) instabil-
ities. For ferromagnetic spin coupling the spin gap de-
pendence on strength of the transverse exchange exhibits
a dome-type shape, opening at Jxy = 0 and closing at
Jxy = Jc1

xy. At Jxy < Jc1
xy a rather unconventional fer-

rometallic phase with gapless spin excitations and strongly
dominating transverse ferromagnetic and triplet supercon-
ducting instabilities in the ground state is observed. Fi-
nally, at Jxy < Jc2

xy, our numerical data indicates on open-
ing of the spin gap. In this phase the system is expected
to show properties of a triplet superconductor.

The paper is organized as follows: in the next section
the weak-coupling continuum-limit version of the model
is investigated. This allows to derive the weak-coupling
phase diagram (Sect. 3). In Section 4 results of DMRG
studies for chains up to L = 120 sites are presented. Fi-
nally, Section 5 is devoted to a discussion and concluding
remarks.

2 Continuum-limit bosonization

Below in this section we consider the low-energy effective
field theory of the model (1) in the case of non-half-filled
band.

The standard bosonization procedure allows to ex-
press the initial lattice model in terms of two independent
bosonic Hamiltonians

H = Hc + Hs

describing respectively the charge (c) and spin (s) de-
grees of freedom. For the band-filling ν �= 1/2, the gap-
less charge sector is described by the free Bose field
Hamiltonian

Hc =
vc

2

∫
dx

{ 1
Kc

(∂xϕc)2 + Kc(∂xϑc)2
}
, (2)

while the spin sector is governed by the quantum
Sine-Gordon field

Hs =
vs

2

∫
dx

{
1

Ks
(∂xϕs)2 + Ks(∂xϑs)2

+
2ms

a2
0

cos(
√

8πϕs)
}

. (3)

Here ϕc,s(x) and ϑc,s(x) are mutually dual bosonic fields

[ϕc,s(x), ϑc,s(x)] = i
2 ,

∂tϕc,s = vc,(s)∂xϑc,s , ∂xϕc,s = 1
vc,(s)

∂tϑc,s , (4)

and a0 is the infrared cutoff of the theory. The model
parameters are given by

2(Kc − 1) ≡ g0c

= − 1
πvF

[
U − (Jxy +

1
2
Jz) cos(2πν)

]
, (5)

2(Ks − 1) ≡ g0s

=
1

πvF

[
U − Jz − (Jxy − Jz

2
) cos(2πν)

]
, (6)

2πms ≡ g⊥

=
1

πvF

[
U − Jxy − Jz

2
cos(2πν)

]
(7)

and the velocities of charge and spin excitations vc,(s) =
vF /Kc,(s), where vF = 2ta0 sin(πν).

Since at ν �= 1/2 the charge sector is described by the
free Gaussian field (2) the vacuum averages of exponen-
tials of the charge fields show a power-law decay at large
distances

〈ei
√

2πϕc(x)e−i
√

2πϕc(x
′)〉 ∼ |x − x′|−Kc , (8)

〈ei
√

2πϑc(x)e−i
√

2πϑc(x
′)〉 ∼ |x − x′|−1/Kc , (9)

and the only parameter controlling contribution of the
gapless charge degrees of freedom to the infrared prop-
erties of the system is the charge LL parameter Kc.

The infrared behavior of the Sine-Gordon Hamiltonian
Hs is described by the corresponding pair of renormaliza-
tion group (RG) equations for the effective coupling con-
stants Ks(l) and Ms(l)

dMs(L)
dL

= −2(Ks(L) − 1)Ms(L)

dKs(L)
dL

= −1
2
M2

s (L) (10)
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where L = ln(a0), Ks(L = 0) = 1 + 1
2g0s and Ms(L =

0) = g⊥/2π. The pair of RG equations (10) describes
the Kosterlitz-Thouless transition [33] in the spin chan-
nel. The flow lines lie on the hyperbola

4(Ks − 1)2 − M2
s = µ2

± = g2
0s − g2

⊥ (11)

and depending on the relation between the bare coupling
constants g0s and g⊥ exhibit two different regimes [34]:

Weak-coupling regime. For g0s ≥ |g⊥| we are in the
weak-coupling regime with effective mass Ms → 0.
The low energy (large distance) behavior of the cor-
responding gapless mode is described by a free scalar
field.
The vacuum averages of exponentials of the corre-
sponding fields show a power-law decay at large dis-
tances,

〈ei
√

2πϕs(x)e−i
√

2πϕs(x′)〉 ∼ |x − x′|−K∗
s , (12)

〈ei
√

2πϑs(x)e−i
√

2πϑs(x′)〉 ∼ |x − x′|−1/K∗
s , (13)

and the only parameter controlling the infrared behav-
ior in the gapless regime is the fixed-point value of the
effective coupling constants K∗

s = Ks(l = ∞) deter-
mined from equation (11).
Strong coupling regime. For 2(K0

s −1) <
∣∣M0

s

∣∣ the sys-
tem scales to strong coupling: depending on the sign of
the bare mass M0

s , the renormalized mass Ms is driven
to ±∞, signaling a crossover to one of two strong cou-
pling regimes with a dynamical generation of a com-
mensurability gap in the excitation spectrum. The flow
of |Ms| to large values indicates that the Mscos

√
8πϕs

term in the sine-Gordon model dominates the long-
distance properties of the system. Depending on the
sign of the mass term, the field ϕs gets ordered with
expectation values [35]

〈ϕs〉 =
{√

π/8 (M0
s > 0)

0 (M0
s < 0)

. (14)

It easy to check that, using the initial values of the cou-
pling constants given in (6)–(7), we obtain the following
condition for generation of a gap in the spin excitation
spectrum

∣∣∣∣U − Jxy − Jz

2
cos(2πν)

∣∣∣∣ >

U − Jxy cos(2πν) − Jz +
Jz

2
cos(2πν). (15)

2.1 Order parameters

To clarify the symmetry properties of the ground states of
the system in different sectors we consider the following
set of order parameters corresponding to the smooth “sm”
and staggered “st” parts of:

1) the on-site density operator

ρ(n) ⇒ ρsm(x) + ρst(x)

where

ρsm(x) �
√

2
π

∂xϕc(x), (16)

ρst(x) ≡ OCDW (x)

� sin(
√

2πϕc − 2kF x) cos(
√

2πϕs), (17)

2) the on-site spin-density

Sn ⇒ Ssm(x) + Sst(x) (18)

where

Sz
sm(n) ≡ Oz

FM (x) � 1√
2π

∂xϕs(x), (19)

Sx
sm(n) ≡ Ox

FM (x)

� sin(
√

2πϕs) cos
(√

2πϑs

)
, (20)

Sy
sm(n) ≡ Oy

FM (x)

� sin(
√

2πϕs) sin
(√

2πϑs

)
, (21)

and

Sz
st(n) ≡ OSDW z (x)

� cos(
√

2πϕc + 2kF x) sin
(√

2πϕs

)
, (22)

Sx
st(n) ≡ OSDW x(x)

� cos(
√

2πϕc + 2kF x) sin
(√

2πϑs

)
, (23)

Sz
st(n) ≡ OSDW y(x)

� cos(
√

2πϕc + 2kF x) cos
(√

2πϑs

)
. (24)

In addition we use the following set of superconducting
order parameters:

3a) the on-site singlet

c†n,↑c
†
n,↓ ⇒ O†

SS(x) + O†
η−SS(x) (25)

3b) the extended singlet

1√
2

(
c†n,↑c

†
n+1,↓ − c†n,↓c

†
n+1,↑

)
⇒ O†

ES(x) + O†
η−ES(x)

(26)

3c) and the triplet pairing

1√
2

(
c†n,↑c

†
n+1,↓ + c†n,↓c

†
n+1,↑

)
⇒ O†

TS0(x) + Oη−TS0(x)

(27)
1√
2

(
c†n,↑c

†
n+1,↑ ± c†n,↓c

†
n+1,↓

)
⇒ O†

TSxy(x) . (28)

Here operators without and with the subscipt η corre-
spond, respectively, to the smooth and 2kF -modulated
(staggered) parts of the corresponding superconducting
order parameters.
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The bosonized expressions for the smooth parts of the
corresponding superconducting order parameters, up to
the accuracy of irrelevant ν-dependent amplitudes and
phase shifts are given by

O†
SS(x) ∼ O†

ES(x) ∼ cos(
√

2πϕs) ei
√

2πϑc , (29)

O†
TS0(x) ∼ sin(

√
2πϕs) ei

√
2πϑc , (30)

O†
TSxy(x) ∼

{
cos

(√
2πϑs

)
ei

√
2πϑc

sin
(√

2πϑs

)
ei

√
2πϑc .

(31)

Similarly the bosonized expression for the staggered com-
ponents of the corresponding superconducting order pa-
rameters are given by

O†
η−SS(x) ∼ O†

η−ES(x) ∼ O†
η−TS0(x)

∼ sin(
√

2πϕc + 2kF x) ei
√

2πϑc , (32)

Note that the smooth part in equation (25) corre-
sponds to the usual BCS-type pairing while at half-filling
the oscillating terms in (25) and (26) describe the weak-
coupling analogs of the η-pairing superconductivity [36].

3 The weak-coupling phase diagram

In this section we consider the ground state phase dia-
gram of the model (1) away from the commensurate value
of the 1/2-filled band. Due to the invariance of the model
parameters under the transformation ν → 1 − ν we re-
strict our consideration to the sector 0 < ν < 1/2. Below
we consider the the weak-coupling ground state phase at
quarter-filling in detail, while for ν �= 1/4 we present a
qualitative description of the phase diagram.

3.1 The U = 0 case

Let us start with the case U = 0 where the basic equations
read:

Kc � 1 +
1

2πvF

(
Jxy +

1
2
Jz

)
cos(2πν) , (33)

and

2(Ks − 1) � − 1
πvF

[
Jz + (Jxy − 1

2Jz) cos(2πν)
]
, (34)

2πms � − 1
πvF

[
Jxy + 1

2Jz cos(2πν)
]
. (35)

In the following we study the two cases ν = 1/4 and ν �=
1/4 separately.

3.1.1 ν = 1/4

At U = 0 the charge sector is featureless with Kc = 1 in-
dependently from the values of the exchange couplings Jz

and Jxy. Since the charge sector is featureless, the ground

Jz

xyJ

J   = Jxyz J   = −Jz xy

C
SS + ES + CDW

<ϕ    >=0s

  Spin gap

TS  +  SDW0 z

<ϕ    >=π/2 s

  Spin gap

A B

LL
TS    +    SDW

xy xy

SS + ES + CDW

( FM  +    − Super conductivity )η

TS  +  SDW
0

η

( FM  +    − Super conductivity ) η
η

z

z
( FM  +    − Super conductivity )

z

Fig. 1. The ground state phase diagram of the 1/4-filled itin-
erant t−Jxy −Jz model. The thick solid lines indicate borders
between the weak-coupling limit phases. Along these lines and
in the sector C the spin excitations are gapless. The charge ex-
citation spectrum is gapless in all sectors of the phase diagram.

state phase diagram is completely determined only by the
spin degrees of freedom. The condition for dynamical gen-
eration of a spin gap reads |−Jxy| > −Jz and thus the spin
sector is gapless for Jz ≤ − |Jxy| and along the semi-axis
Jz ≥ 0. These conditions determine the following three
sectors of the phase diagram (see Fig. 1):

The sector A (Jxy < 0, Jz > −Jxy) corresponds to
a spin gapped phase with dominating SDW z and TS0

ordering. These correlations decay as power-laws at large
distances:

〈OSDW z (0)OSDW z (r)〉 � cos(πr/2) · r−1 , (36)
〈OTS0(0)OTS0(r)〉 � r−1 . (37)

The longitudinal ferromagnetic and the η-supercondu-
cting correlations decay faster as

〈OFMz (0)OFMz (r)〉 � r−2 , (38)
〈Oη−SS(0)Oη−SS(r)〉 � 〈Oη−ES(0)Oη−ES(r)〉
� 〈Oη−TS0(0)Oη−TS0(r)〉 � cos(πr/2) · r−2 . (39)

Other correlations decay exponentially.
The sector B (Jxy > 0, Jz > −Jxy) corresponds to

a spin gapped phase with dominating SS, ES and CDW
ordering. The corresponding correlations show a power-
law decay at large distances:

〈OSS(0)OSS(r)〉 = 〈OES(0)OES(r)〉 � r−1, (40)

〈OCDW (0)OCDW (r)〉 � cos(πr/2) · r−1 . (41)

In this case also the longitudinal ferromagnetic and the η-
superconducting correlations decay faster (38) and (39),
while all other correlations are exponentially suppressed.

In the sector C (Jz < − |Jxy|) the gapless Luttinger
Liquid (LL) phase is realized. All correlations decay as
power-laws, however the transverse antiferromagnetic and
triplet superconducting instabilities are the dominating
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instabilities in this sector. The corresponding correlations
decay as

〈OSDW xy (0)OSDW xy(r)〉 � cos(πr/2)r−1−1/K∗
s , (42)

〈OTSxy (0)OTSxy(r)〉 � r−1−1/K∗
s , (43)

where the fixed point value of the spin LL parameter

K∗
s = 1 +

1
2πvF

√
J2

z − J2
xy > 1 . (44)

Since the spin stiffness parameter K∗
s > 1, the longitudi-

nal ferromagnetic and the η-superconducting correlations
given by equations (37) and (38) decay faster and are the
subleading instabilities in this sector. The transverse fer-
romagnetic correlations decay even faster as

〈OFMx,y (0)OFMx,y (r)〉 � r−K∗
s −1/K∗

s . (45)

However, within the accuracy of the used first order RG
approach their decay is the same as of the longitudinal
ferromagnetic correlations (38).

Finally, the CDW , SDW z and the TS0 correlations
decay as

〈OCDW (0)OCDW (r)〉 � 〈Oz
SDW (0)Oz

SDW (r)〉
� cos(πr/2) · r−1−K∗

s , (46)

〈OTS0(0)OTS0(r)〉 � r−1−K∗
s , (47)

and correspond to the weakest instabilities in this sector.

3.1.2 ν �= 1/4

At ν �= 1/4 the charge stiffness parameter Kc �= 1 and
therefore the line Jz = −2Jxy divides the parameter space
into two semiplanes: the part with dominating CDW or
SDW instabilities at Kc < 1 and the part with dominat-
ing superconducting instabilities at Kc > 1. However, the
effect of charge sector essentially depends on the band-
filling.

At 1/4 < ν < 1/2, Kc − 1 ∼ sign(Jz + 2Jxy). There-
fore the dynamical generation of a spin gap and subse-
quent pinning of the spin field with vacuum expectation
value 〈ϕs〉 = π/2 results to metallic phase with dominat-
ing Triplet Superconducting (TS0) instability at Jxy < 0,
Jxy < Jz < −2Jxy and dominating antiferromagnetic
SDW z at −0.5Jz < Jxy < −0.5 cos(2πν)Jz (see Fig. 2,
sectors A and B respectively).

In the sector C of the phase diagram, at
−2Jxy cos2(πν) < Jz < −2Jxy/ cos(2πν), the spin
gapped metallic phase with dominating CDW phase is
realized.

In the Luttinger Liquid sectors of the phase diagram
D and E, at Jz < min{Jxy ,−2 cos2(πν)Jxy} the line
Jz = −2Jxy marks the transition from a LL phase with
dominating TSxy instability at Jz < min{Jxy,−2Jxy} (see
Fig. 2, sector E) to a LL phase with dominating transverse
antiferromagnetic instabilities SDW xy at −2Jxy < Jz <
−2 cos2(πν)Jxy (see Fig. 2, sector D). One has to note,

xyJ

J   = − 2Jz

<ϕ   > = π/2s

Jz
SDW   

z

( TS   )0

 J   = 4 J xyz

A
<ϕ  >=0s

  Spin gap  Spin gap

0TS  

K   < 1c

K   < 1c

K   > 1c

K   > 1c
B

C

E2

TSxy
LL

LL

E

J   =z Jxy

z
( SDW    )

TSxy

(SS+ES+TS   )

z z

D1
2

xy( TS    )

SDW
xy

D1

J   = − 0.5J

J   =−0.6Jz xy

J   =1.3J

CDW

(SS+ES)

( CDW+SDW   )z0 (SDW     )xy

xy

xyxy

Fig. 2. The ground state phase diagram of the 1/3-filled itiner-
ant t−Jxy −Jz model. The thick solid lines denote lines in the
parameter space where the spin gap opens and indicate borders
between the weak-coupling limit phases. The thin solid line cor-
responds to the line Kc = 1 and marks the transition from the
sector of phase diagram with dominating density instabilities
(Kc < 1) into the sector with dominating superconducting or-
dering (Kc > 1). The dashed lines mark (qualitatively) the
crossover areas between the Luttinger Liquid phases with dif-
ferent sets of subleading instabilities. The phases A and B, as
well as the D2 and E2 phases are characterized by an identical
excitation spectrum and interchange of leading and sublead-
ing instabilities. The subleading instabilities are indicated in
brackets.

that for a given band-width ν �= 1/4 in the LL sectors D
and E, there are additional “subdominant order crossover”
lines (marked by dashed lines in Figs. 2 and 3) which sep-
arate two areas with two different subdominant order. In
particular, in the subsector E1 the subdominant order is
SS + ES + TS0 and in the subsector E2 it is SDW xy .
Similarly, in the subsector D1 the subdominant order is
CDW + SDW z and in the subsector D2 it is TSxy.

On the other hand, at ν < 1/4 (see Fig. 3) the
A sector corresponds to the spin gapped metallic state
with dominating SDW z instabilities, while triplet su-
perconductivity TS0 is the dominating instability in the
narrow stripe of sector B. Similarly, in the sector C
at Jz > max{−2Jxy/ cos(2πν),−2Jxy cos2(πν)} a spin
gapped phase with dominating tendencies towards singlet
superconducting ordering is realized. Similarly in the Lut-
tinger liquid phase dominant and subdominant instabili-
ties in the sectors D and E change places, i.e. in sector
D the dominant order is TSxy and the subdominant or-
der in sector D1 is SS + ES + TS0 and in sector D2 it is
SDW xy. In sector E the dominant order is SDW xy and
the subdominant order in sector E1 is SDW z +CDW and
in sector E2 it is TSxy.

3.2 The Jz = 0 case

At Jz = 0 the basic equations read:

Kc � 1 − 1
2πvF

(U − Jxy cos(2πν)) , (48)
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J   = − 1.5Jz xy

( SDW    ) 
xy

 TS 
xy  

  ( SS+ES+TS   )  0

J   =  1.51J xy

Jz

xyJ

J   = Jxyz

J   = − 2J

J   = − 4J
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Fig. 3. The ground state phase diagram of the 1/6-filled itiner-
ant t−Jxy−Jz model. Solid lines indicate borders between the
weak-coupling limit phases. The thick solid lines denote lines
in the parameter space where the spin gap opens and indicate
borders between the weak-coupling limit phases. The thin solid
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diagram with dominating density instabilities (Kc < 1) into
the sector with dominated superconducting ordering (Kc > 1).
The dashed lines mark (qualitatively) the crossover areas be-
tween the Luttinger Liquid phases with different sets of sub-
leading instabilities. The phases A and B, as well as the D2 and
E2 phases are characterized by an identical excitation spec-
trum and interchange of leading and subleading instabilities.
The subleading instabilities are indicated in brackets.

and

2(Ks − 1) � 1
πvF

[
U − Jxy cos(2πν)

]
, (49)

2πms � 1
πvF

[
U − Jxy

]
. (50)

Again we distinguish the cases ν = 1/4 and ν �= 1/4 in
the following.

3.2.1 ν = 1/4

At U �= 0, even for ν = 1/4 the charge stiffness parameter
Kc �= 1 and therefore the line U = 0 divides the parame-
ter space into two parts, the part with dominating CDW
or SDW instabilities at U > 0 (Kc < 1) and the part
with dominating superconducting instabilities at U < 0
i.e. (Kc > 1).

At Jxy < 0 and U > Jxy the spin sector is gapped and
the spin field gets ordered with vacuum expectation value
〈ϕs〉 = π/2. This leads to the suppression of all instabil-
ities whose power-law decay is less than 1/r2 except the
SDW z and TS0 ones, which show a power-law decay

〈OSDW z (0)OSDW z (r)〉 � r−Kc cos(2πνr) (51)

〈OTS0(0)OTS0(r)〉 � r−1/Kc . (52)

Therefore, in the sector A, at Jxy < 0 < U the SDW z is
the dominating instability in the system and in the sec-
tor E at Jxy < U < 0 the triplet superconducting ordering
dominates.

For U < Jxy < 0 and for U < Jxy/2 the spin sector
is also gapped but the vacuum expectation value of the
ordered spin field 〈ϕs〉 = 0. This leads to suppression of
all instabilities with power-law decay less than 1/r2 except
density-density and singlet superconducting instabilities,
which show the following power-law decay

〈OCDW (0)OCDW (r)〉 � r−Kc cos(2πνr) (53)

〈OSS(0)OSS(r)〉 � 〈OES(0)OES(r)〉 � r−1/Kc . (54)

Therefore in the sector C at 0 < U < Jxy/2 the
CDW ordering dominates, while in the sector D at U <
min{0, Jxy} the singlet superconducting order is realized.

Finally, in the sector B (U > Jxy/2) the LL phase with
gapless charge and spin excitation spectrum and domi-
nating easy-plane antiferromagnetic ordering is realized
in the ground state. The corresponding correlations show
a power-law decay

〈OSDW xy(0)OSDW xy (r)〉 � r−Kc−1/K∗
s , (55)

where the fixed point value of the spin stiffness parameter
is given by

K∗
s = 1 +

1
2πvF

√
Jxy(2U − Jxy) . (56)

One can easily show that the CDW and SDW z correla-
tions decay faster

〈OCDW (0)OCDW (r)〉 �
〈OSDW z (0)OSDW z (r)〉 � r−Kc−K∗

s , (57)

and are the subleading instabilities in this sector.

3.2.2 ν �= 1/4

At ν �= 1/4 the phase diagram is qualitatively the same as
at quarter-filling (see Fig. 4). The minor difference con-
sist of the ν dependence of the border lines which mark
transitions between different phases. In particular:

1) the semiplane in the parameter space corresponding
to dominant density-density correlations (sectors A,
B and C in the phase diagram) is separated from
the semiplane with dominant superconducting order-
ing (sectors E and D) by the line U = Jxy cos(2πν);

2) the line U = Jxy cos2(πν) corresponds to the border
line between the B and C sectors of the phase diagram.

To conclude this section, we have shown that the weak-
coupling phase diagram of the non-half-filled itinerant
t− J −U model shows a triplet superconducting ordering
in the sector of the phase diagram with dominating fer-
romagnetic exchange and easy-plane anisotropy. However,
as it was shown in reference [31] in the case of half-filled
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Fig. 4. The ground state phase diagram of the 1/4-filled itiner-
ant t−Jxy −U model. Solid lines indicate borders between the
weak-coupling limit phases. The thick solid lines denote lines
in the parameter space where the spin gap opens and indicate
borders between the weak-coupling limit phases. The thin solid
line U = 0 marks the transition from the sector of phase dia-
gram with dominating density instabilities (Kc < 1) into the
sector with dominated superconducting ordering (Kc > 1).
The subleading instabilities are indicated in brackets.

band and for transverse ferromagnetic exchange stronger
then some critical value Jxy < Jc

xy (−Jc
xy � W , where W

is the bandwidth), the transition into an insulating phase
with easy-plane type ferromagnetic ordering takes place.

Although the transition into the gapless phase with
ferromagnetic order (ferrometal) at ν �= 1/2 is a pure
finite-bandwidth, strong coupling effect, the very pres-
ence of this transition as well as a clear asymmetry be-
tween antiferromagnetic (Jxy > 0) and ferromagnetic
(Jxy < 0) exchange can be traced already within the
weak-coupling treatment, if we take into account the
Hartree regularization of the hopping amplitude given by
teff = t (1 + γJxy/2πt). Here γ(ν) > 0 is a band-filling de-
pendent parameter, which is of the order of unity for the
band-fillings considered in this paper. It is clear that in the
case of antiferromagnetic transverse exchange the effective
bandwidth increases, while for ferromagnetic coupling it
reduces. The weak-coupling approach fails when the ef-
fective dimensionless coupling constant |gi | = |Jxy|/πvF

becomes of the order of unity. Taking into account the
Hartree renormalization of the Fermi velocity we esti-
mate the range of applicability of the weak-coupling ap-
proach as |Jxy| < πt. In this sector of the parameter space
with strong easy-plane anisotropy |g⊥| > |g0s| the soli-
ton mass of the sine-Gordon field (3) is given by Ms �
W exp (−πW/2|Jxy|) [32] and therefore for |Jxy| ≤ πt the
spin gap increases with increasing strength of the trans-
verse ferromagnetic exchange. However, since in the case
of strong ferromagnetic exchange Jxy ≤ −πt the effective
bandwidth W ∼ teff tends to zero, the initial increase of
the spin gap should change into a decrease caused by the
collapse of the bandwidth W . As we show below, using the
DMRG studies of chains up to L = 120 sites, this is indeed
the case. For Jxy < 0, the spin gap as a function of the pa-

rameter Jxy shows a bellshaped behavior with maximum
at Jxy � −πt and reaches zero at Jxy = J

(c1)
xy � −4t. At

J < J
(c1)
xy the ground state of the system is similar to that

of the t− Jxy model with gapless charge (due to the dop-
ing) and gapless spin (due to the in-plane, XY character
of the exchange) excitation spectrum.

4 Numerical results for Jz = 0 and ν = 1/4

In order to check the validity of the picture suggested by
the bosonization results derived in the previous sections
we use the density-matrix renormalization-group (DMRG)
method [37–39]. As in our previous study [31] it is applied
to open chains up to 120 sites keeping typically 400 states
in each block using the infinite-size algorithm to deter-
mine the ground-state properties, including correlation
functions.

Below we focus on the case of a quarter-filled band and
Jz = 0.

4.1 Excitation spectrum

First we determine the low-lying spin and charge excita-
tions as function of the transverse spin exchange Jxy. In
the numerical calculations, we have found that for open
boundary conditions the ground state energy for a system
of L sites with N↑ up-spin and N↓ down-spin electrons
E

(L)
0 (N↑, N↓) remains in the sector with the “z” compo-

nent of the total spin Sz
tot = 0 (i.e. N↑ = N↓ = N/2,

where N = N↑ + N↓ is the total number of electrons) for
all parameter values studied here.

As it is commonly used in literature, gaps to exci-
tations classified as charge excitations are calculated by
taking the difference between ground-state energies with
different number of particles. It is convenient to stay in
the sector with Sz

tot = 0 and therefore the charge gap is
evaluated by

∆c(L) =
1
2

[
E

(L)
0

(
N

2
+ 1,

N

2
+ 1

)

+E
(L)
0

(
N

2
− 1,

N

2
− 1

)
−2E

(L)
0

(
N

2
,
N

2

)]
. (58)

We determine the spin gap as the difference between the
lowest energy in the sector with Sz

tot = 0 (N↑ − N↓ = 2)
and the ground state energy

∆s(L) = E
(L)
0

(
N

2
+ 1,

N

2
− 1

)
− E

(L)
0

(
N

2
,
N

2

)
. (59)

The results for finite chains are extrapolated for L → ∞
by fitting a polynomial in 1/L. As expected the charge
gap ∆c = limL→∞ ∆c(L) vanishes for all values of Jxy.
On the other hand, the spin gap ∆s = limL→∞ ∆s(L)
shows a nontrivial behavior where five different regimes
can be distinguished (Fig. 5).



48 The European Physical Journal B

−10.0−9.0−8.0−7.0−6.0−5.0−4.0−3.0−2.0−1.0 0.0 1.0 2.0 3.0 4.0
Jxy/t

0.00

0.10

0.20

0.30

0.40

0.50

∆ S
/t

U=5t
U=1t
U=0t
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(Jxy < 0) at U = 0 and for fillings ν = 1/2, 1/4, 3/8, 1/8.

In agreement with predictions of the weak-coupling
treatment, at U = 0 and weak exchange |Jxy| the spin
sector is gapped for both signs of the transverse exchange.
With increasing antiferromagnetic exchange the spectrum
remains gapped, while in the case of ferromagnetic ex-
change, at Jxy � −2.5t the spin gap starts to decrease
and becomes zero at Jc1

xy � −3.4t. The spin gapless phase
remains till Jc2

xy � −5.8t where the spin gap opens once
again.

Thus three gapful regimes (for large ferro- and anti-
ferromagnetic couplings and for intermediate ferromag-
netic exchange) are separated by two gapless regimes. As
it is seen from Figure 5 a repulsive Coulomb interaction
U > 0 only changes this behaviour quantitatively. The
gap is slightly suppressed and the gapful regimes appear
at larger values of the exchange interaction Jxy.

We have also checked the band-filling dependence of
the spin-gapped phase for intermediate feromagnetic ex-
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Fig. 7. Correlation functions, plotted against the real space
distance |i−j|, in the case of strong antiferromagnetic exchange
Jxy = 3.8t and U = 0. The lower figure shows the decay of the
correlations, plotted on a double logarithmic scale. Numbers
in the inset of the lower figure are the exponents. The nota-
tion “xxx” corresponds to the case of exponentially decaying
correlations.

change. As it follows from Figure 6 the dome-type de-
pendence of the spin gap on the increasing ferromagnetic
transverse interaction qualitative remains unchanged at
ν �= 1/2. Although position and value of the maximum
of the spin gap depends on the band filling (Fig. 6) the
effect of the closing of the spin gap at large ferromagnetic
exchange is band-filling independent.

4.2 Correlation functions at U = 0

To investigate the nature of ordering in the different
phases we study the behavior of the correlation functions.
In the sectors with gapless excitation spectrum we expect
the usual expression for correlation functions

C(r) ≡ 〈O†(r)O(0)〉 ∼ A1r
−θ1 + cos (2kF r) A2r

−θ2 (60)

consisting of a smooth part decaying with exponent θ1

and an oscillating part decaying with θ2. In determining
the asymptotics of correlation functions we focus on the
dominating part given by θ = min{θ1, θ2}.

In the following we will present results for correlation
functions in different sectors of the phase diagram.

4.2.1 Sector I: Jxy > 0. The SS + ES + CDW phase

We start our consideration from the case antiferromag-
netic exchange. In Figure 7 we have plotted results of
DMRG calculations for correlation functions at Jxy = 3.8t
and U = 0.
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As it is clearly seen from Figure 7, in an excellent
agreement with the bosonization results, the triplet super-
conducting and antiferromagnetic correlations are com-
pletely suppressed in this case, while the singlet supercon-
ducting and density-density correlations show an identical
power-law decay with critical indices equal to one. The
very small deviation of the numerically evaluated values
of the exponents θES = 0.97 and θCDW = 0.98 from the
analytically predicted value θSS = θES = θCDW = 1 re-
flects the high accuracy of the obtained numerical results
in this sector of the phase diagram.

4.2.2 Sector II: Jc1
xy < Jxy < 0. The SDWz+ TS0 phase

Let us now consider the case of ferromagnetic exchange.
At Jxy < 0 and U = 0. the weak-coupling bosonization
results predict exponential suppression of the CDW and
singlet correlations, whereas SDWz and triplet correlators
TS0 show a power-law decay (cf. with Eqs. (36), (37)).
Furthermore, they are the dominating instabilities in this
phase.

Figure 8 displays DMRG results for the correlation
functions. One can clearly observe a strong SDWz and
TS0 correlation in the ground state. In addition, from the
double logarithmic plot one obtains that the in-plane mag-
netic correlations decay exponentially, while the density
and singlet-superconducting correlations show an almost
identical power-law decay at large distances. This is ex-
pected from the bosonization results, since, due to the
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Fig. 9. Correlation functions, plotted against the real space
distance |i−j|, in the case of strong antiferromagnetic exchange
Jxy = −5.0t and U = 0. The lower figure shows decay of the
correlations, plotted on a double logarithmic scale. Numbers
in the inset of the lower figure are the exponents. The nota-
tion “xxx” corresponds to the case of exponentially decaying
correlations.

pinning of the spin Bose field with vacuum expectation
value 〈√2πKsϕs〉 = π/2, the in-plane magnetic correla-
tions which are determined by the dual-field decay expo-
nentially. The same reason of spin-field pinning leads to
suppression of the oscillating part in the density correla-
tions (clearly seen in Fig. 8) and to the suppression of the
smooth part of the on-site singlet correlations. The latter
is the reason why the on-site and extended singlet-pair
correlations show an identical behavior.

4.2.3 Sector III: Jc2
xy < Jxy < Jc1

xy . The ferrometallic phase

In Figure 9 we have shown results of DMRG calculations
for correlation functions for strong ferromagnetic coupling
Jxy = −5.0t. In this sector, charge and spin gap vanish
and the system shows properties of a metal with gapless
spin degrees of freedom. As it is clearly seen, the trans-
verse ferromagnetic and triplet superconducting instabil-
ities dominate in the ground state. The lower figure in
Figure 9 displays correlation functions plotted in a double
logarithmic scale. As it follows from this figure, despite the
gapless character of spin excitations, the singlet supercon-
ducting correlations are suppressed exponentially. At the
same time, the SDWz and CDW correlations also show
power-law behavior, but decay slightly faster then the in-
plane spin correlations. Clearly in this sector the system
shows very unconventional behaviour, not consistent with
the standard weak-coupling results.
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Fig. 10. Qualitative form of the ground state phase diagram
for the t − JXY − U model at quarter-filling and t = 1 and
U > 0. The bold red line shows the spin gap as a function of
the parameter Jxy.

4.2.4 Sector IV: Jxy < Jc2
xy. The triplet superconducting

phase

This is the most intriguing sector of the phase diagram.
The spin excitation spectrum is gapped. Moreover, as it
is clearly seen from Figure 5, the opening of the spin gap
at Jxy < Jc2

xy � −5.8t is independent of the on-site repul-
sion U . This indicates that in this sector of the phase
diagram the itinerant nature of the electron system is
completely lost and the phase diagram is completely de-
termined by the properties of the effective ferromagnetic
t − Jxy model. We expect that this sector of the phase
diagram corresponds to a triplet superconducting phase.

5 Conclusions

Motivated by recent experimental findings that show ev-
idence for the competition or even coexistence of su-
perconductivity and magnetism we have continued our
studies of the ground state properties of an itinerant
XY model. Using a composite approach based on weak-
coupling bosonization and DMRG studies for chains up
to L = 120 sites we have studied the ground state phase
diagram of the itinerant XY model away from half-filling.

Depending on the model parameters Jxy, U ≥ 0 and
the band-filling ν we have found evidence for five differ-
ent phases in the ground state. Figure 10 summarizes our
findings for the particular case of a quarter-filled band.
Within the considered range of parameters the charge gap
is always zero. The behavior of the spin gap as function of
the spin-coupling Jxy allows to distinguish the following
different phases:
1. For antiferromagnetic interactions Jxy > 0 the spin

gapful metallic phase with dominating singlet super-
conducting and density-density correlations.

2. Approaching the line Jxy = 0 the spin gap closes and
at this point the system shows properties of a Luttinger
metal.

3. In the ferromagnetic sector at −3.8t = Jc1
xy < Jxy < 0

the spin gap is finite. It opens for arbitrary weak fer-
romagnetic XY -exchange, shows a dome-type shape

and closes at Jxy = Jc1
xy. In this sector of the phase di-

agram the system displays properties of a spin gapped
metal with coexistence of triplet superconducting and
spin-density-wave (SDWz) instabilities.

4. At −5.8t = Jc2
xy < Jxy < Jc1

xy a ferrometallic phase
with gapless spin excitations and strongly dominating
triplet superconducting and transverse ferromagnetic
instabilities is realized in the ground state.

5. At Jxy < Jc2
xy the spin gap opens once again. We ex-

pect that in this phase the system shows properties of
a triplet superconductor. We have to stress that the
effective ferromagnetic t − Jxy model, which governs
the behaviour of the system in this sector of the phase
diagram, requires very detailed separate studies.

Although the presented numerical results are restricted to
the case of quarter-filled band, our analysis indicates that
qualitatively the phase diagram remains similar at ν �=
1/4. However, deviations from the commensurate value of
the quarter-filled band remove the degeneracy in favour
of density-density type ordering at Jxy cos(2πν) < 0 and
superconducting type ordering at Jxy cos(2πν) > 0.

One of the interesting perspective for future studies
would be the investigation of a genuine ferromagnetic t−J-
type model which should help to understand the limit of
strong Coulomb repulsion better.
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H.V. Löhneysen, N.R. Bernhoeft, G.G. Lonzarich, Nature
412, 58 (2001)

8. T.M. Rice, M. Sigrist, J. Phys.: Condens. Matter 7, L643
(1995)

9. I.I. Mazin, D.J. Singh, Phys. Rev. Lett. 79, 733 (1997)
10. M. Sigrist, D. Agterberg, A. Furusaki, C. Honerkamp, K.K.

Ng, T.M. Rice, M.E. Zhitomirsky, Physica C 317–318, 134
(1999)

11. T.R. Kirkpatrick, D. Belitz, T. Vojta, R. Narayanan, Phys.
Rev. Lett. 87, 127003 (2001)



C. Dziurzik et al.: Triplet superconductivity in a 1D itinerant electron system 51

12. D.J. Singh, I.I. Mazin, Phys. Rev. Lett. 88, 187004 (2002)
13. M.B. Walker, K.V. Samokhin, Phys. Rev. Lett. 88, 227001

(2002)
14. A.V. Chubukov, A.M. Finkel’stein, R. Haslinger, D.K.

Morr, Phys. Rev. Lett. 90, 077002 (2003)
15. A.I. Buzdin, A.S. Mel’nikov, Phys. Rev. B 67, 020503

(2003)
16. T.R. Kirkpatrick, D. Belitz, Phys. Rev. B 67, 024515

(2003)
17. I.I. Mazin, D.J. Singh, Phys. Rev. B 69, 020402 (2004)
18. M.D. Johannes, I.I. Mazin, D.J. Singh, D.A.

Papaconstantopoulos, Phys. Rev. Lett. 93, 097005
(2004)

19. T. Ishiguro, K. Tamaji, G. Saito, Organic Superconductors,
2nd edn. (Springer, 1998)
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